Slingshot cofilin phosphatase localization is regulated by Receptor Tyrosine Kinases and regulates cytoskeletal structure in the developing Drosophila eye

نویسندگان

  • Edward M. Rogers
  • Frank Hsiung
  • Aloma B. Rodrigues
  • Kevin Moses
چکیده

Animal development requires that positional information act on the genome to control cell fate and cell shape. The primary determinant of animal cell shape is the cytoskeleton and thus the mechanisms by which extracellular signals influence the cytoskeleton are crucial for morphogenesis. In the developing Drosophila compound eye, localized polymerization of actin functions to constrict the apical surface of epithelial cells, both at the morphogenetic furrow and later to maintain the coherence of the nascent ommatidia. As elsewhere, actin polymerization in the developing eye is regulated by ADF/cofilin ('Twinstar', or 'Tsr' in Drosophila), which is activated by Slingshot (Ssh), a cofilin phosphatase. Here we show that Ssh does act in the developing eye to limit actin polymerization in the assembling ommatidia, but not in the morphogenetic furrow. While Ssh does control cell shape, surprisingly there are no direct or immediate consequences for cell type. Ssh protein becomes apically concentrated in cells that express elevated levels of the Sevenless (Sev) receptor-tyrosine kinase (RTK), even those which receive no ligand. We interpret this as a non-signal driven, RTK-dependent localization of Ssh to allow for locally increased actin filament turnover. We suggest that there are two modes of actin remodeling in the developing eye: a non-RTK, non-Ssh mediated mechanism in the morphogenetic furrow, and an RTK and Ssh-dependent mode during ommatidial assembly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cdi/TESK1 kinase is required for Sevenless signaling and epithelial organization in the Drosophila eye.

How cellular behaviors such as cell-to-cell communication, epithelial organization and cell shape reorganization are coordinated during development is poorly understood. The developing Drosophila eye offers an ideal model system to study these processes. Localized actin polymerization is required to constrict the apical surface of epithelial cells of the eye imaginal disc to maintain the refine...

متن کامل

Dev113308 1..13

The Rac-Cofilin pathway is essential for cytoskeletal remodeling to control axonal development. Rac signals through the canonical RacPak-LIMK pathway to suppress Cofilin-dependent axonal growth and through a Pak-independent non-canonical pathway to promote outgrowth. Whether this non-canonical pathway converges to promote Cofilin-dependent F-actin reorganization in axonal growth remains elusive...

متن کامل

Rho GTPases Regulate Axon Growth through Convergent and Divergent Signaling Pathways

Rho GTPases are essential regulators of cytoskeletal reorganization, but how they do so during neuronal morphogenesis in vivo is poorly understood. Here we show that the actin depolymerization factor cofilin is essential for axon growth in Drosophila neurons. Cofilin function in axon growth is inhibited by LIM kinase and activated by Slingshot phosphatase. Dephosphorylating cofilin appears to b...

متن کامل

Dev113308 4716..4728

The Rac-Cofilin pathway is essential for cytoskeletal remodeling to control axonal development. Rac signals through the canonical RacPak-LIMK pathway to suppress Cofilin-dependent axonal growth and through a Pak-independent non-canonical pathway to promote outgrowth. Whether this non-canonical pathway converges to promote Cofilin-dependent F-actin reorganization in axonal growth remains elusive...

متن کامل

GPCR-mediated PLCβγ/PKCβ/PKD signaling pathway regulates the cofilin phosphatase slingshot 2 in neutrophil chemotaxis

Chemotaxis requires precisely coordinated polymerization and depolymerization of the actin cytoskeleton at leading fronts of migrating cells. However, GPCR activation-controlled F-actin depolymerization remains largely elusive. Here, we reveal a novel signaling pathway, including Gαi, PLC, PKCβ, protein kinase D (PKD), and SSH2, in control of cofilin phosphorylation and actin cytoskeletal reorg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mechanisms of Development

دوره 122  شماره 

صفحات  -

تاریخ انتشار 2005